Neutrino Factory and Beta-beams

1. Motivation
2. Operation Principles
3. Neutrino factory the accelerator
4. Neutrino factory the detectors
5. Beta beam the accelerator
6. Beta beam the detectors
7. Overall comparison
8. Conclusions

Today: overview with lots of questions open
Tomorrow: more details on the accelerator
(mostly NUFACT) and R&D
The neutrino mixing matrix: 3 angles and a phase δ

θ_{23} (atmospheric) = 45°, θ_{12} (solar) = 32°, θ_{13} (Chooz) < 13°

$\Delta m^2_{23} = 2 \times 10^{-3}$ eV2

$\Delta m^2_{12} = 8 \times 10^{-5}$ eV2

Unknown or poorly known even after approved program:

θ_{13}, phase δ, sign of Δm^2_{13}

$\begin{pmatrix}
\sim \frac{\sqrt{2}}{2} & \sim -\frac{\sqrt{2}}{2} & \sin \theta_{13} e^{i\delta} \\
\sim \frac{1}{2} & \sim \frac{1}{2} & \sim -\frac{\sqrt{2}}{2} \\
\sim \frac{1}{2} & \sim \frac{1}{2} & \sim \frac{\sqrt{2}}{2}
\end{pmatrix}$

'007 neutrino lectures Alain Blondel
Motivations

Neutrinos can tell us much more than just ‘we have mass!’

-- is CP violated in neutrino oscillations?
-- is the mixing angle θ_{13} small, very small, zero?
-- is the mass hierarchy ‘natural’ or ‘bizarre’?
-- is the mixing angle θ_{12} really very close to $\pi/4$?
-- is the mixing matrix unitary?
-- are there special relations between mixing angles and masses in neutrinos (as perhaps in quarks?)
-- can we measure the mixing parameters with the same precision as for quarks in order to test our theoretical ideas?
Motivations (II)

Conventional neutrino beams (from pion decay) have intrinsic limitations:

1. Exact shape and intensity of flux is not well known Limited by knowledge of hadron production compounded by delicacies of neutrino beam line

2. Neutrino cross sections are poorly known and difficult to measure

3. Near detectors measure flux times cross-sections for the main component of the beam

4. Optimization capability is limited

⇒ Experiments are limited at the ~5% level
K2K beam

T2K off axis Beam
But anti-ν are also present!
THE CHALLENGE:

If physics of flavour due to symmetry GUT and/or family then

The quark- and lepton-mixing parameters must be related

For the theory of flavour to be developed measurements must be sufficiently precise to remove the model-builders freedom

Challenge to neutrino experimenters:

Measure neutrino-mixing parameters with a precision similar to the precision with which the quark-mixing parameters are known
Consequences of 3-family oscillations:

I. There will be $\nu_\mu \leftrightarrow \nu_e$ and $\nu_\tau \leftrightarrow \nu_e$ oscillation at L_{atm}

$$P (\nu_\mu \leftrightarrow \nu_e)_{\max} \approx \frac{1}{2} \sin^2 2\theta_{13} + \ldots \text{ (small)}$$

II. There will be CP or T violation

CP: $P (\overline{\nu}_\mu \leftrightarrow \overline{\nu}_e) \neq P (\nu_\mu \leftrightarrow \nu_e)$

T: $P (\nu_\mu \leftrightarrow \nu_e) \neq P (\nu_e \leftrightarrow \nu_\mu)$

III. We do not know if the neutrino ν_1 which contains more ν_e is the lightest one (natural?) or not.

Oscillation maximum $\ 1.27 \ \Delta m^2 \ \ L / E = \pi/2$

Atmospheric $\Delta m^2 = 2.5 \times 10^{-3} \ \text{eV}^2 \ \ L = 500 \text{ km @ 1 GeV}$

Solar $\Delta m^2 = 7 \times 10^{-5} \ \text{eV}^2 \ \ L = 18000 \text{ km @ 1 GeV}$

Oscillations of 250 MeV neutrinos:

$$P (\nu_\mu \leftrightarrow \nu_e)$$

July 2007 neutrino lectures Alain Blondel
Three family oscillations look at $\nu_\mu \rightarrow \nu_e$ oscillation

$L = \frac{\pi}{2.54} \frac{E}{\delta m^2}$

$\ell = \frac{\pi}{2.54} \frac{E}{\Delta m^2}$

Figure 3: Sketch of $P(\nu_\mu \rightarrow \nu_e)$ as function of the baseline computed for monochromatic neutrinos of 1 GeV in the solar baseline regime for $\delta_{CP} = 0$ (left) and in the atmospheric baseline regime for $\delta_{CP} = -\pi/2$ (right), where the different terms of eq. 4 are displayed. The following oscillation parameters were used in both cases: $\sin^2 2\theta_{13} = 0.01$, $\sin^2 2\theta_{12} = 0.8$, $\Delta m_{23}^2 = 2.5 \times 10^{-3}$ eV2, $\Delta m_{12}^2 = 7 \times 10^{-5}$ eV2.

July 2007 neutrino lectures Alain Blondel
CP violation

\[
P(\nu_e \rightarrow \nu_\mu) - P(\bar{\nu}_e \rightarrow \bar{\nu}_\mu) = \frac{A_{\text{CP}} \alpha \sin \delta \sin (\Delta m^2_{12} L/4E) \sin \theta_{12}}{\sin \theta_{13} + \text{solar term}}
\]

... need large values of \(\sin \theta_{12}, \Delta m^2_{12}\) (LMA) but *not* large \(\sin^2 \theta_{13}\)

... need APPEARANCE ... \(P(\nu_e \rightarrow \nu_e)\) is time reversal symmetric (reactor vs do not work)

... can be large (30%) for suppressed channel (one small angle vs two large)

... asymmetry is opposite for \(\nu_e \rightarrow \nu_\mu\) and \(\nu_e \rightarrow \nu_\tau\)

An interference phenomenon:

\[
P(\nu_e \rightarrow \nu_\mu) = |A|^2 + |S|^2 + 2 A S \sin \delta
\]

\[
P(\bar{\nu}_e \rightarrow \bar{\nu}_\mu) = |A|^2 + |S|^2 - 2 A S \sin \delta
\]
asymmetry is a few % and requires excellent flux normalization (neutrino fact., beta beam or off axis beam with not-too-near near detector)

NOTES:
1. sensitivity is more or less independent of θ_{13} down to max. asymmetry point
2. This is at first maximum! Sensitivity at low values of θ_{13} is better for short baselines, sensitivity at large values of θ_{13} is better for longer baselines (2d max or 3d max.)
3. sign of asymmetry changes with max. number.
A Experiments to find θ_{13}:

search for $\nu_\mu \rightarrow \nu_e$

-- in conventional ν_μ beam (MINOS, OPERA)
limitations: NC π^0 background, intrinsic ν_e component in beam

-- in reactor experiments

-- Off-axis beam (JPARC-SK, NOvA, T2KK) or

-- Low Energy WBB Superbeam (BNL/FNAL \rightarrow INO, SPL \rightarrow Fréjus)

B Precision experiments to find CP violation

-- or to search further if θ_{13} is too small

-- beta-beam

$^6\text{He}^{++} \rightarrow ^6\text{Li}^{+++} \bar{\nu}_e e^-$ and $^{18}\text{Ne}^{10+} \rightarrow ^{18}\text{F}^{9+} \bar{\nu}_e e^+$

-- Neutrino factory with muon decay storage ring

$\nu^+ \rightarrow e^+ \bar{\nu}_e \bar{\nu}_\mu$ and $\nu^- \rightarrow e^- \bar{\nu}_e \bar{\nu}_\mu$

fraction thereof will exist.

July 2007 neutrino lectures Alain Blondel
July 2007 neutrino lectures Alain Blondel
CERN: β-beam baseline scenario

neutrinos of $E_{\text{max}} \approx 600$ MeV

Nuclear Physics

SPL

ISOL target & Ion source
ECR
Cyclotrons, linac or FFAG
Rapid cycling synchrotron

target!

Decay ring
$B = 5$ T
$L_{\text{ss}} = 2500$ m

Stacking!

Same detectors as Superbeam!

$^6\text{He}^{++} \rightarrow ^6\text{Li}^{+++} \bar{\nu}_e e^-$

$^{18}\text{Ne}^{10+} \rightarrow ^{18}\text{F}^9+ \bar{\nu}_e e^+$
3.5 GeV SPL
+ γ = 100 β–beam

End point is $E = 2\gamma Q$

$Q =$ end point in center of mass, 3.5 MeV for 6He

Cross section for $\nu N \rightarrow \mu X$

Averaged yearly CC rates in a 10 years run for CP

-- low proton energy:
no Kaons $\rightarrow \nu_e$ background is low

-- region below pion threshold
(low bkg from pions)

but:
low event rate and uncertainties on cross-sections
High gamma beta-beam increases sensitivity considerably

Beta-beam at FNAL?

\[\gamma_{\text{max}} = \gamma_{\text{max proton}} / 3 \]

for \(^6\text{He}\)

OR one has to buy a new TeV accelerator.

(Hernandez, Gomez-Cadenas)
Combination of beta beam with low energy super beam

Combines CP and T violation tests

$$\nu_e \rightarrow \nu_\mu \quad (\beta^+) \quad (T) \quad \nu_\mu \rightarrow \nu_e \quad (\pi^+)$$

(CP)

$$\bar{\nu}_e \rightarrow \bar{\nu}_\mu \quad (\beta^-) \quad (T) \quad \bar{\nu}_\mu \rightarrow \bar{\nu}_e \quad (\pi^-)$$
EC: A monochromatic neutrino beam

Electron Capture: $N + e^- \rightarrow N' + \nu_e$

<table>
<thead>
<tr>
<th>Decay</th>
<th>$T_{1/2}$</th>
<th>BR$_{\nu}$</th>
<th>EC/ν</th>
<th>B(GT)</th>
<th>E_{GR}</th>
<th>Γ_{GR}</th>
<th>Q_{EC}</th>
<th>E_{ν}</th>
<th>ΔE_{ν}</th>
</tr>
</thead>
<tbody>
<tr>
<td>148Dy$^+ \rightarrow ^{148}$Tb*</td>
<td>3.1 m</td>
<td>1</td>
<td>0.96</td>
<td>0.96</td>
<td>0.46</td>
<td>620</td>
<td>2682</td>
<td>2062</td>
<td></td>
</tr>
<tr>
<td>150Dy$^+ \rightarrow ^{150}$Tb*</td>
<td>7.2 m</td>
<td>0.64</td>
<td>1</td>
<td>1</td>
<td>0.32</td>
<td>397</td>
<td>1794</td>
<td>1397</td>
<td></td>
</tr>
<tr>
<td>152Tm$^2^- \rightarrow ^{152}$E$_T^*$</td>
<td>8.0 s</td>
<td>1</td>
<td>0.45</td>
<td>0.50</td>
<td>0.48</td>
<td>4300</td>
<td>520</td>
<td>8700</td>
<td>4400</td>
</tr>
<tr>
<td>150Ho$^2^- \rightarrow ^{150}$Dy*</td>
<td>72 s</td>
<td>1</td>
<td>0.77</td>
<td>0.56</td>
<td>0.25</td>
<td>4400</td>
<td>400</td>
<td>7400</td>
<td>3000</td>
</tr>
</tbody>
</table>

![Graph](image.png)

Distance = 130 km, $\theta_{13} = 5$ deg

130 km
1. Production of pions by high power proton accelerator (4 MW)
 Proton energy 5-15 GeV

2. Pt→ PL transfer and pion decay to muons

3. Muon phase rotation and bunching

4. Muon cooling

5. Muon acceleration in large acceptance device

6. Muon storage at 20-50 GeV in decay ring

7. Neutrinos of $E_\nu \leq E_\mu$
Intense K physics
Intense Low-E muons
Neutrino Factory
Higgs(es) Factory(ies)
Energy Frontier \(\rightarrow 5\) TeV

circa 1997-1999
US, Europe, Japan
Neutrino fluxes $\mu^+ \rightarrow e^+ \nu_e \nu_\mu$

ν_μ/ν_e ratio reversed by switching μ^+/μ^-
$\nu_e \nu_\mu$ spectra are different
No high energy tail.

Very well known flux ($\pm 10^{-3}$)

-- $E & \sigma_E$ calibration from muon spin precession
-- angular divergence: small effect if $\theta < 0.2/\gamma$,
-- **absolute flux measured** from muon current
or by $\nu_\mu e^- \rightarrow \mu^- \nu_e$ in near expt.

-- in **triangle or racetrack ring**,
muon polarization precesses and averages out
(preferred, \rightarrow calib of energy, energy spread)

Similar comments apply to beta beam, except spin 0
\rightarrow Energy and energy spread have to be obtained
from the properties of the storage ring
(Trajectories, RF volts and frequency, etc…)

μ polarization controls ν_e flux:
$\mu^+ \rightarrow X \rightarrow \nu_e$ in forward direction
July 2007 neutrino lectures

INO ~7000 km (Magic distance)
Superbeam & beta-beam: Non-MAGNETIC

Nu-Fact: MAGNETIC

DETECTORS

<table>
<thead>
<tr>
<th>Beam Type</th>
<th>15Ne</th>
<th>Superbeam π^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_e \to \nu_\mu$</td>
<td>T violation</td>
<td>$\nu_\mu \to \nu_\theta$</td>
</tr>
<tr>
<td>CP violation</td>
<td>CPT</td>
<td>CP violation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam Type</th>
<th>6He</th>
<th>Superbeam π^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\nu}e \to \bar{\nu}\mu$</td>
<td>T violation</td>
<td>$\bar{\nu}\mu \to \bar{\nu}\theta$</td>
</tr>
</tbody>
</table>

Neutrino Oscillations

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Muon +</th>
<th>Muon -</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+ \to e^+ \nu_\theta \bar{\nu}_\mu$</td>
<td>$\bar{\nu}\mu \to \bar{\nu}\mu$</td>
<td>$\nu_\mu \to \nu_\mu$</td>
<td>CC</td>
</tr>
<tr>
<td>$\bar{\nu}\mu \to \bar{\nu}\theta$</td>
<td>$\nu_\mu \to \nu_\theta$</td>
<td>CC</td>
<td>Appearance (‘platinum’ channel)</td>
</tr>
<tr>
<td>$\bar{\nu}\mu \to \bar{\nu}\tau$</td>
<td>$\nu_\mu \to \nu_\tau$</td>
<td>CC</td>
<td>Appearance (atmospheric oscillation)</td>
</tr>
<tr>
<td>$\nu_\theta \to \nu_\theta$</td>
<td>$\bar{\nu}\theta \to \bar{\nu}\theta$</td>
<td>CC</td>
<td>Disappearance</td>
</tr>
<tr>
<td>$\nu_\theta \to \nu_\mu$</td>
<td>$\bar{\nu}\theta \to \bar{\nu}\mu$</td>
<td>CC</td>
<td>Appearance: ‘golden’ channel</td>
</tr>
<tr>
<td>$\nu_\theta \to \nu_\tau$</td>
<td>$\bar{\nu}\theta \to \bar{\nu}\tau$</td>
<td>CC</td>
<td>Appearance: ‘silver’ channel</td>
</tr>
<tr>
<td>$\nu \to \nu_\theta$</td>
<td>$\bar{\nu} \to \bar{\nu}_\theta$</td>
<td>NC</td>
<td>Global disappearance, sterile neutrinos</td>
</tr>
</tbody>
</table>
July 2007 neutrino lectures

Alain Blondel

Mid-energy region:
- **QE**
- **π**
- **n**
- Super beam (**Numi off, T2KK, CNGS+)**
- High Energy beta-beam (**CERN highQ or SPS+)**
- Water Cherenkov (**Mton**)
- **TASD (NOvA), Larg TPC**

Low energy region:
- **QE** dominates
- Low energy super beam (**T2K, T2HK, T2KK, Frejus**)
- Low energy beta-beam (**CERN baseline scenario**)
- **WATER CHERENKOV (Mton)**

High-energy region:
- **DIS**
- Neutrino Factory
- Magnetized Iron
- Emulsion
- Large magnet around: emulsion, TASD, Larg
Magnetized Iron calorimeter
(baseline detector, Cervera, Nelson)
B = 1.7 T Φ = 15 m, L = 25 m
t(iron) = 4 cm, t(sc) = 1 cm
Fiducial mass = 100 kT
Charge discrimination down to 1 GeV
very similar to MINOS/NOvA/ND280
ex. detector: sci. fi. detector with multipixel APD readout

Event rates for 10^{21} muon decays for 50 GeV beam

<table>
<thead>
<tr>
<th>Baseline</th>
<th>ν_μ CC</th>
<th>ν_e CC</th>
<th>ν_μ signal ($\sin^2 \theta_{13} = 0.01$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>732 Km</td>
<td>10^9</td>
<td>2×10^9</td>
<td>3.4×10^5 (J-PARC I \rightarrow SK = 40)</td>
</tr>
<tr>
<td>3500 Km</td>
<td>4×10^7</td>
<td>7.5×10^7</td>
<td>3×10^5</td>
</tr>
</tbody>
</table>
Golden: signal and backgrounds

Stored μ^+

50% $\bar{\nu}_\mu$ ν_μ

50% ν_e $\bar{\nu}_e$

detector $\mu^+\bar{\nu}_\mu$

$\pi^+\pi^-$

$e^-\nu_e$

wrong sign muon

Backgrounds

Hadron decay

CC $\nu_e\bar{\nu}_\mu$

not detected

$\mu^+e^-D^-\mu^-$

$\pi^+\pi^-$

Charge misidentification

$\bar{\nu}_\mu$

μ^+

$\pi^+\pi^-$

no other lepton detected !!!

in the final state
The MEMPHYS Project

Beta-beam detectors are similar to super-beam detectors

Excavation engineering pre-study has been done for 5 shafts

July 2007 neutrino lectures Alain Blondel
A revealing comparison:

A detailed comparison of the capability of observing CP violation was performed by P. Huber (+M. Mezzetto and AB) on the following grounds:

-- **GLOBES** was used.

-- **T2HK** from LOI: 1000kt, 4MW beam power, 6 years anti-neutrinos, 2 years neutrinos. Systematic errors on background and signal: 5%.

-- The beta-beam 5.8×10^{18} He dk/year 2.2×10^{18} Ne dk/year (5+5yrs)
The **Superbeam** from 3.5 GeV SPL and 4 MW. Same 500kton detector
Systematic errors on signal efficiency (or cross-sections) and bkgds are 2% or 5%.

-- **NUFACT** $3.1\times10^{20}\mu^+$ and $3.1\times10^{20}\mu^+$ per year for 10 years
100 kton iron-scintillator at 3000km and 30 kton at 7000km (e.g. INO) (old type!)
The matter density errors of the two baselines (uncorrelated): 2 to 5%
The systematics are 0.1% on the signal and 20% on the background, uncorrelated.

All correlations, ambiguities, etc... taken into account.
What do we learn?

1. Both (BB+SB+MD) and NUFAC'T outperform e.g. T2HK on most cases.
2. Combination of BB+SB is really powerful.
3. For sin²θ₁₃ below 0.01 NUFAC'T outperforms anyone.
4. For large values of θ₁₃ systematic errors dominate:
 Matter effects for NUFAC'T,
 Cross-section errors for low energy beta-beams and superbeams.
 This is because CP asymmetry is small!
Figure 95: The $\sin^2 2\theta_{13}$ sensitivity limit relative to the optimum value of $5.9 \cdot 10^{-5}$ at $L_1 = L_2 \simeq 7500$ km. It is plotted at the 3σ confidence level as function of the baselines L_1 and L_2 heading from the 50 GeV Neutrino Factory towards two 25 Kton detectors. The sensitivity limit includes full correlations and degeneracies. The true parameters for this figure are $\Delta m_{31}^2 = 3 \cdot 10^{-3}$ eV2, $\theta_{23} = \pi/4$, $\Delta m_{21}^2 = 7 \cdot 10^{-5}$ eV2 and $\sin^2 \theta_{12} = 0.28$. Figure taken from [41].
at 3000 km, 1st max is at 6 GeV
2d max is at 2 GeV
...but no events down there...
At 7000 km 1st max is at 14 GeV
No real need to go over 20 GeV muon energy
Initial comparison

Beta-beam

1. Low energy, even with 1 TeV proton accelerator, $E < 2-3$ GeV
 no taus, no matter resonance

2. Pure ν_e or anti-ν_e
 Well known flux
 Non-magnetic detectors
 Combination of superbeam required (?)
 for ν_μ cross section measts

3. Accelerator issues:
 Ion production (need 10^{19} - 10^{21}/year)
 High intensity, activation of accelerator
 Storage and duty factor

4. Performance: low E BB is inferior.
 High E BB is very competitive for CP at large θ_{13}
 Not for universality test, matter effect

Neutrino-factory

1. High energy $E \geq 15$ GeV
 taus, matter resonance

2. ν_e and anti-ν_μ simultaneously
 Well known flux
 Magnetic detectors
 Low energy threshold difficult
 Golden channel $\nu_e \sim \nu_\mu \rightarrow \mu^- X + CC$
 Electron charge difficult

3. Accelerator issues:
 4 MW Target station
 Cooling (RF in magnetic field)
 Acceleration, beam monitoring

4. Performance: High E nufact
 Will outperform at small θ_{13}
 for CP, universality test, matter effect, precision.

July 2007 neutrino lectures Alain Blondel
5. Technological readiness:
More recent!
Beta-beam not competitive without new concepts (see later) that need to be developed.
Activation in accelerator needs solution

6. Detector
Baseline is Water Cherenkov “just needs money” R&D on phototubes!
Liquid Argon, TASD not demonstrated for very large masses

5. Technological readiness:
Design and ideas are now mature. Unknowns regard RF Volts in magnetic field and power on target.
Cooling, target and accelerator demos are underway

6. Detector
Baseline is Magnetized iron + emulsion target for taus “just needs money” + R&D on photosensors
Liquid Argon, TASD not demonstrated for very large masses in magnetic volume!
7. COST
1G€ for Mton detector + similar for accelerator with sharp dependence on ion energy.

Both projects cost about 2 G€ ~ “ILC/4”. This is 5-10X more than NOvA or T2K

7. COST
ISS cost = 1.4 G$ accelerator + 300M$ for far detector
All costs “unloaded”